A REVISION OF THE AUSTRALIAN GENUS DIEMENIA SPINOLA (HEMIPTERA: PENTATOMIDAE; PENTATOMINAE)

\author{

1. AMHAD \& S. KAMALUDDIN
}

Abstract

AHMAD, I. \& KANALUDDIN, S. 1989. A revision of the Ausrralian genus Diemenia Spinola (Hemiptera: Pentatomidae: Pentatomínae) Rec. S. Aust, Mus. 23 () : 21-31,

Diemenia immarginara (Dallas) and D rubromarginata (Guerin-Meneville) are redeseribed in addition to two new species grossi from Mt Buffalo and Mt Hotham, eastern Vicroria and minuta from New England, Vicroria, and from Green Hill Esiate, South Austratia, with special reference to their metathoracic sceni auricles and male and lemale genitalia, D. rubromiarsitrata rubromarginata serisu stricto and D. rubromarginata deyrollei Spinola, considered as two different subspeices of D. rubromarginatu (Guérin-Méneville) by Gross (1976) are synonymised. A cladistic analysis of the taxa in the light of the above characters is also included.

1. Ahmad, Deparment of Zoology-Emomology, University of Karachi, Karachi-32, Pakistan and S. Kamaluddin, Department of Zoology, Federal Governmenl Lida Science College, Karachi, Pakistan. Manuseript received 22 January 1988.

Species of Diemenia Spinola are Australian in distribution. Gross (1976) speculared that D. immarginata (Dallas) might reach New Zealand but we did not find any material from there. Another species, D. rubromarginata (Guérin-Méneville), is frequently found as adults and nymphs under eucalyptus bark in the wettest part of South Australia (Gross 1976).

Kirkaldy (1909) catalogued five specles, viz. affinis (Dallas), deyrollei Spinola, distincius (Montandon), immarginatus and rubromarginatus. Gross (op. cit.) examined the type material of the first tour and a series of specimens of the fifth, and on this basis considered affinis, deyrollei and distinctus to be junior synonyms of rubromarginata. Gross (op. cit.) also deseribed and illustrated the male genitalia (pygophore, paramere and partly inflated aedeagus) of rubromarginata, compared it with D. deyrollei, found no difference and therefore suggested that both represented the subspecies of D, rubromarginatus. The former (D. rubromarginata rubromarginata sensu stricto was considered to be the low altitude eastera and southern Australian subspecies).

In this paper D. rubromarginaia deyrollei is considered to be a junior synonym of D rubromarginata rubromarginata. In addition to D. rubromarginata and D immarginata, two new species D. grossi and D. minuta are described with reference to metathoracie scent complex and male and female genitalia, A key to the four species is given and a cladistic analysis is presented. Dissection and inflation of the male genitalia utilised the technique of Ahmad (1986). For the dissection of the female genitalia, illustrations, and measurements, conventional procedures, especially those used by the present authors (1981), were generally followed. All the measurements are in millimetres.

Genus Diemenia Spinola
Diemenia Spinola, 1850, p. 35; Gross, 1976, p. 356.

Type-species: D. rubramarginara (GuérinMéneville) (by monotypy)

Description

Coloration: Geserally body dark brown or black with ochraceous patches,

Head; Distinctly broader than long; paraclypei much longer than clypeus but never enclosing the latter, produced into lobe-like structure just above the eyes; anteocular distance distinctly longer than remainder of head; antenniferous tubercles produced anteriad into spine-fike process; antennae with basal segment longer than head apex, 2nd segment much longer than 3rd; labium reaching to hind coxae,

Thorax: Pronotum distinctly more than $2 x$ broader than long, humeral angles prominent, lateral margins serrate; mesosternum sulcate; metathoracic scent gland ostiolar peritreme lobelike, evaporating area rugulose; scutellum longer than broad, triangular: hemelytra with lateral matgins sinuate.
Abdomen: Connexiva completely exposed at repose, sometimes tergal sclerites also exposed; 3rd and 4th abdominal venter with rugose vittae.

Male genitalia; Pygophore quadrangular, lateral tobes remarkably long; paramere Y-shaped; aedeagus with pair of many lobed dorsal membranous conjunctival appendage, penial lobes short, about equal to length of vesica.

Female genialia: First gonocoxae triangular; 9th paratergites lobe-like and shorter than fused eighth paratergites; proctiger with posterior margitt concave; spermathecal bult with finger-like
processess, flanges distinct, pump region Jonger than buib, proximal spermathecal duct much longes than distal spermathecal duct.

Key to the Seectes of the Genus Diementa

1 - Paraclypeal lobe in front of the cyes small: pygophore with bifureated dorso-lateral lobes, inrer lobe of blade of paramere with a single seta.- rubromarginata (Guérin-Méneville)

- Paraclypeal lobe in front of the eyes more prominent, pygophore with unilobed dorsoJateral Jobes; inner lobe of blade of paramere without seta

2
2 - Entire lateral margins of pronotum distinctly serrate; tergites not exposed at repose; dorsolateral lobes of pygophore laterally not produced spermathecal bulb with two-finger-like processes grossi sp. nov.

- Orily antero-lateral margins of pronotum setrate; tergites exposed at repose; dorsolateral lobes of pygophote laterally produced; spermathecal bulb with three finger-like processes............................... . 3
3 - Anteacular distance slightly longer than remainder of head; 2nd labial segment shorter than 3 rd; dorso-lateral lobes of pygophore beak-like.
. immarginata (Dallas)
- Arteocular distance about $1 / 2 \times$ lengit of remainder of head; 2nd labial segment longer than 3rd; dorso-lateral Jobes of pygophore Jobe-like. minuta sp. nov.

Diemenia grossi sp.nov
(Figs. 1, 5, 9, 13, 17, 21, 25)

Description

Coloration: Body black, except lobe just sbove the eyes brown, thickly punctate; proximal $1 / 2$ of 3 rd and 4th anternal segments and anterolateral half of pronotum pale; a bittle anterobasal portion of corium, and each median connexival portion ochraceous; ocelli tinged reddish; eyes brownish black; membrane of hemelytra light brown. Total length of male $=10.2 ;$ female $=10.3$.
Head: Anteocular distance (ili) slightly more than $1 / 1 / 2 \times$ remainder of head (0,7); paraclypeal lobe just above the eyes more prominent with rounded tips; antenniferous tubercles large with sharply pointed tips; antenuae with 2 nd segment distinctly more than $3 \times$ length of basal segment, length of segments i 0.8 (0.8-0.85), II $2.7(2.7-2.95)$, Ift 1.6, IV i. 7 ((t.5-1.7) lablum with tith segnent
longet than basal and slightly shorter than 3 rd, length of segments, $10.7(0.7-0.8) 111.1$ (1.1-1.15), III $1.0(1.0-1.1)$, IV 0.9; bead width $2.65(2.6-2.65)$; interocular distance 1.6 ; interocelfar distance 0.6 (0,6-0,7).

Thorax: Pronotal width 5.0 (4,9-5.0) distinctly more than $21 / 2 \times$ its length 1.9 (1.7-1.9), entire lateral margins distinctly serrate, anterior angle spinose and not reaching $1 / 2$ length of eyes, humeral angle acute, (4.9-5.0); scutellum (length $3.5,3.3-4.5$; width $2.9,2.9-3.0$) with distinct apical loke, metathoracic scent gland ostiolar peritreme (Fig. 5) lobe-like, apex acliminate, anteriorly directed; length base scutellum-apex clavus 2.7 (2.6-2.7); apex clavus-apex corium 2.3 (1.9-2.3); apex corium-apex abdomen including membrane $1.5(1.5-2,0)$; apex scutellumi-apex abdomen including membrane 3.0 (3.0-3.5).

Abdomen: Postero-tateral margin of 7 th abdominal sternum sinuate; entire connexiva exposed at repose

Male genitalia; Pygophore (Fig. 9) as long as broad, lateral lobe narrowed, elongate, inwardly directed, postero-dorsal margin medially contvex; posteroventral margin medialfy shallowly concave; paramere (Fig. 13) with inner margin of inner lobe of blade convex, apex nartowed; aedeagus (Fig. 17) with dorsal membranous conjunctival appendage bilobed at base, each lobe formed by four-lobed structure, with pait of yentrolateral thecal appendages, vesita short, slightly shorter than penial plates.
Female genitalia (Fig. 21); First gonocoxae large, plate-like, somewhat triangulat, medially ctose to each other; 2nd gonocoxae convex; 9th paratergites narrowed, lobe-like, posterior margins of fused 8th paratergites medially inpushed; spermatheca (Fig. 25) with margins of pump region distinctly sinuate, spermathecal bulb with iwo finger-like processes.

Material examined

Holotype male, New England National Park vis Ebor, N.S.W. 22,23-1-1966, B. Cantrell, it Queensland Museum, Brisbane (Reg. No. T. II, 107). Paralype: I female, Green Hili Estate, Foot bills, savannah form Ra. S.A, 24-8-1958, Under bark Mc Lofty, TE. Woodward, in Department of Entomology, University of Queensland, Brisbane.

Comparative note

Diemenia grossi sp. nov, is most closely related to immarginata (Dallas) and minuta sp. nov. in having paraclypeal lobe just above the eyes prominent, anta inner lobe of blade of paramere withoul seta but it can easily be separated from both by having entire lateral margin of pronotun distinctly denticulate, spermathecal bulb with two-funget-like processes and by other characters as noted in the key and description.

FIGURE I, Diemenja grossi, male, dorsal view

Diemenia immargingta (Dallas)
(Figs 2, 6, 10, 14, 18, 22, 26)

Platycoris immarginatus Dallas, 1851, 1. 1. Diemenia immarginata Gross, 1976, p. 363,

Description

Coloration and measurements: Body blackish brown. thickly punctate except narrow lateral margin of paraclypei, antennae with little basal portion of hasal and 3rd segment, anterolateral margin of pronotum, scutellum with basal spot at

FIGURE 2. Dienmenia immarginata, male, doisal vies.
each angle and apical little margin, about bassil 75 portion of each tibiae and median lille portion of each connexival joints light brownz acelli browst; eyes brownish black; membrane of hentelyoa brown. Toial length of male $=9.0 ;$ female $=10.3$.

Head: Anteocular distance $0.9(0.8-9) .9)$ slightly more than remainder of head $0.8(0.65-0.8)$; paraclypeal tobe just above the eyes promment with
rounded Uips; antenniferous tuhercles targe with sharply pointed tips: antennae with 2nd segment Ebout $3 x$ length of basal segment, length of segments, I $0.8(0.7-0.8)$, $112.3(2.1-2.3)$, 1111.3 (1,2-1.3), 1V mutilated; lablum with 4th segment shighty longer than basal and distinctly shorter than 3rd, lengits of segments, I $0.7(0.6-0.7), 110.9$, III $1.1(1.0-1.1)$, [V $0.8(0.7-0.8)$; head width 1.95

FIGURE 3. Diemena minuta, hale derxal view.
(1.95-2.15); interocular distance 1.6 (1.4-1.6); interocellar distance 0.65.

Thorax: Pronotal width 4.6 (4.4-4.6) distinctly more than $21 / 2 x$ is length 2.7 ($2.65-2.7 \%$, anterolateral margin of pronotum dentate, anterior angle produced and passing mote than te length or eje, humeral angles acute; scutellum (lengith 3.2. $2.85-3.2$; width $2.7,2.65-2.7)$ with less distimet apical lobe; metathoracic scen gland osniular
jeritneme (Fig 6) lobe-like apex round and anterolaterally directed; length base scutellum-apex clavus $2,4(2,2-2.4)$, apex chavus-apex corium 2,1 (1,8-2,1); apex corium-apes abdomen including membrane 1.1 ($1.1-1,8$); apex scutelliom-apex abdomen including suembeane 2.5 (2.5-28).

Ahdormen: Postero-lateral margin of 7 th abdominil stemum sinuate, entire connexiva and last three tergal segments exposed at repose.

FIGURE 4: Diemenía rubrumurginaia, male, dorsal view.

Male genitulia: Pygophore (Fgg. 10) stightly broader than long, lateral lobe narrownd, heakshaped, outwardly directed; posterd-dprsul margin sinuate; paramere (Fig. 14) with intrer inangin of the inner lobe of blade corivex, apex narroseri: aedeagus (Fig . 18) with dorsal membranous conjunetival appendage bilobed at base, each lobe formed by four-lobed siructure, with pair of ventro-
lateral thecal appendages, vesica short, slightly shorter than penial plates.

Fernale gentialia (Fig. 22); First gonocoxae large, plate-like, somewhat triangular, medially close to ead other; 2nd gonocoxae concave; 9th paratergites broad, Iobe-like; posterior margins of fused 8th paracergites medially slightly concave; spermatheca (Fig. 26) with margins of pump region slightly

FIGURES 5-12. Diemenia species: 5-8, metathoracic scent giand ostioles, ventral view; 5 , grossi, 6 , immarginata, 7. minuta, 8, rubromarginaia; 9-12, pygophore, dorsal view, 9, grossi, 10, inimarginata, 11, minuta, 12, rubromarginata. Ith, abd, seg. (Eleventh abdominal segment); dll. (dorso-lateral lobe); dmas (dorsomedian surface); e. (evaporatoria); o, (ostiole): per. (perifreme); pre (prociger).
sinuate, spermathecal bulb with three finger-like processes.

Material examined

I male, Burnie Tas, Lea. det, G.F. Gross 1987, 1 female, Mi Kosciusko. B. Ingleby. det. G.F. Gross 1987, in South Australian Museum, Adelaide.

Compurative note

Diamenia immarginata (Dallas) is most closely related to minuta sp. nov. in having only anterolateral margins of pronotum denticulate, tergites exposed at repose and spermathecal bulb with three finger-like processes but it can easily be separated from the same by having anteocular distance only slightly longer than remainder of head and lateral lobes of pygophore pointed into a beak-like structure and by other characters as noted in the key and description.

Diemenia minula sp. nov,
(Figs. 3, 7, 11, 15, 19, 23, 27)

Description

Coloration and measurements; Body ochraceous black, thickly punctate; except narrow lateral
margins of paraclypei, anterniae with 1st and 2nd, of proximal $1 / 3$ of 3 rd and Ath segments, anterolateral margins of pronotum, a small spot at each basal angle and on aplcal lobe of scutellum. antero-lateral patch on corium, proximal $1 / 2$ of femur, more than proximal $2 / 3$ of portion of each tibia, median little portion of each connexival suture achraceous; ocellitinged red; eyes dark; membrane of hemelytra brown. Total length male $=8,30$; female $=9.70$.

Heod: Anteocular distance 0.9 (0.9-0.95) about $11 / 2 \times$ length remainder of head $0.6(0.6-0.65)$; paraclypeal lobe jusi above eyes prominently developed with rounded tipss, antenniferous tubercles moderate with blunt tips; antennae with 2 nd segment equal or slightly longer than $3 \times$ Fength of ist segment, length of segments $10.7,112.3$ (2.1-2.3), III 1.4 (1.2-1.4), IV 1.5; labium with 4ib segment equal to 1 st and distinctly shorter than 3 rd, length of segments. $10.6(0.6-0.75)$, II 1.05 (1.0-1.05), IIt 1.0, IV $0.6(0.6-0.75)$; width head 2.2 (2.2-2.3); interocular distance (1.4, 1.4-1.5); interocellar distance 0.6 .

Thorux: Width of pronotum 4.1 (4.1-4.35), abour $21 / 2 \times$ its length 1,6 ($1,6-1,8$); antero-lateral margin serrate, anterior angle blunt and not reaching $1 / 2$ length of eyes, humeral angles acute; scutellum (length 2.8, 2.8-3.3; width 2.5, 2.5-2.9) with less distinct apical lobe; metathoracic scent gland ostiolar peritreme (Fig, 7) lobe-like, apex narrowed, anterolaterally dirested; length base scutellum-apex clavus 2.2 (2.2-2.6); apex clavusapex corium 1.9 (1.9-2.1); apex corium-2pex abdomen including membrare 0.8 (0.8-1.6); apex scutellum-apex abdomen including membrane 2.4 (2.4-3.0).

Abdomen: Postero-lateral margin of 7th abdominal sternum sinuate, entire connexiva and last three tergal segments exposed at repose.

Male genitalia: Pygophore (Eig. 1) as long as broad, lateral lobe narrowed, elongate, outwardly directed, postero-dorsal margin medially sinuate, postero-ventral margin medially shallowly concave; paramere (Fig, 15) with innee margin of inner lobe of blade convex, apex narrowed and acuminate; aedeagus (Fig. 19) with dorsal membranous conjunctival appendage bilobed at base, each lobe formed by trilobed structure, with pair of ventrolateral thecal appendages, vesica sbort, slightly shorter than penial plates.

Female genitalia (Fig. 23): First gonocoxae large, plate-like, somewhat triangular, medially close to each other; 2 nd gonocoxae straight; 9th paratergites broad, lobe-like; posterior margins of fused 8 th paratergites medially slightly concave; spermatheca (Fig. 27) with margns of pump region medially notched, spermathecal bulb with three linger-like processes.

Material examined

Holotype male, Mt Buffalo National Park, east Victoria, 17-1-1966, B. Cantrell, io Queensland Museum, Brisbane (Reg. No. T.11, 106). Paratype; I female, Mt Hotham, east Victoria 16-1-1966, I. Weir, Department of Entomology, University of Queensland, Brisbane,

Comparative note

Diamenia minuta sp. nov. is most closely related to D. immarginata (Dallas) as noted under the comparative note of that species, but it can easily be separated from the same by having 2nd labial segment longer than 3rd as compared to 2nd labial segment shorter than 3 rd in D_{0} immarginata and by other characters as noted in the key and description.

Dismenia rubromarginata (Guérin-Méneville)

(Figs. 4, 8, 12, 16, 20, 24, 28)
Platycoris rubromarginatus Guérin-Méneville, 1830, p. 169.

Diemenia rubromarginata Gross, 1976, p. 366.
Platycoris distinctus Montandon, 1903, p. 286.
Platycoris affinis Dallas, 1851, p. 154.
Diemenia deyrollei Spinola, 1850, p. 91.
Diemenia rubromarginata deyrollei Spinola (sic Signoret) 1850, Gross, 1976, p. 366.

Description

Coloration and measurements: Body dark brown, thickly punctate, except narrow lateral margin of paraclypei, antennae with small basal arch of 1st prosimal $1 / 3$ of 4th and 5 th, entire lateral margins of pronotum, one spot at each basal angle of scutellum, proximal half of lateral margin of corium, tibia excluding small distal part, lareral comexival sutures pale; litile distal portion of tibia and all tarsi light brown; ocelli tinged reddish; eyes dark brown; membrane of hemelytra brown. Total length male 9.9 (9.15-10.0); female 9.6 (9.4-9.6).

Head: Anteocular distance $0.9(0,85-0,9)$ stightly longer than remainder of head 0.8 (0.7-0.8); paraclypeal lobe just above the eyes poorly developed with rounded tips; antenniferous tubercles large with sharply pointed tips; antennae with 2 nd segment more than $3 \times$ length of basal segment length of segments, I 0.9, 112.9 (2.9-3.0), III 1.4 (1.4-1.6), IV 1.5; labium with 4 Lh segment distinctly shorter than basal and slightly shorter than 3 r d, length of segments, $11.1, \mathrm{II} 1.2,[111.0$, iv 0.9; head width 2.5 ($2.35-2.5$); interocular distance 1.5 (1.35-1.55), interocellar distance 0.7 (0.7-0.75).

Thorax: Width of pronotum 4,6 (4,3-4,8) distinetly more than $21 / 2 \times$ its length $1.6(1.5-2.9)$; antero-lateral margin serrate, anterior angles acute and much sborter than $1 / 2$ length of the eyes, humeral angles sub-rounded, scutellum (length 3.1 , 2.9-3.3; width $3.0,2.7-3.0$) with distinct apical labe; metathoracic scent gland ostiolar peritreme (Fig. 8) elongate, spatulate, apex narrowed, anteriorly directed; length base scutellum-apex clavis 2.4 (2.0-2.5); apex clavus-apex corium 2.5 (2.1-2.6); apex corium-apex abdomen including membrane 1,6 (1.4-1.9); apex scutellum-apex abdomen including membrane 3.2 (3.0-3.2),
Abdomen: Postero-lateral margin of 7 th abdominal stermum somewhat straight, entire connexiva and last three abdominal terga exposed at repose.

Male genitalia; Pygophore (Fig. 12) much broader than long, lateral lobes narrowed at apex and shorter, postero-dorsal margin medially slightly convex posteroventral margin deeply concave; paramere (Fjg. 16) with inner margin of inner lobe of blade sinuath apex broad, outer lobe curyed

FIGURES 13-20. Parameres, inner view, 13, grossi, 14, immarginata, 15, minuta, 16, rubromarginata; 17-20, aedeagus, dorsal view, 17, grossi, 18, immarginata, 19 minuta, 20, rubromarginata. bl. (blade); dmc. app. (dorsal membranous conjunctival appendage); gp. (gonopore); pi. (penial lobe); stm (stem); th. (theca); ves. (yesica); vl th. app, (ventro-lateral thecal appendage).
inward, beak-like; aedeagus (Fig. 20) with dorsal membranous conjunctival appendage bilobed at base, each lobe formed by bidobed structure, wilh pair of ventral thecal appendages, vesiea shorr, abour equal to length of penial plates.

Female genitalia (Fig. 24): First gonocoxac large, plate-like, somewhat triangular, medially wide apart; 2nd gonocoxae concave; 9th paratergites narrowed, lobe-like; posterior margins of fused 8th paralergites medially inpushed; spermatheca (Fig, 28) with margins of pump region slightly sinuate, spermathecal bulb with three finger-like processes.

Material examined

1 male, I female South Australia, Horsnells Gully, Lower Hermitage, $17.10 .1891,14-18-5-1966$, JW. Mellon, J. Herridge, der. G.F. Gross 1987; I male, 1 female Hobarr, Tasmania - J.J. Walker collection, in British Museum (Natural Histary), London; 1 female, Jasmann Loan No. HE 702/84, in Zoological Museum Helsinki, Finland,

Comparative note

Diemenia rubromarginata (Guérin-Méneville) sesembles most D. immarginula (Dallas) in having antemiferous rubercules remarkably developed and spine-like and paraclypei much longer than clypeus, but it can easily be separated from all the Diemenia species by having paractypeal lobe just above the eyes less prominent and inner lobe of the blade of paramere with a single seta, and by other characters as noled in the key and description.

Cladistic Analysis of the Included Taxa

Ahmad \& Kamaluddin (1989) have presented a cladogram of some genera of the Diemenia group of Gross (1976) including Diementa and Niarius. Here a cladistic analysis of Diemenia species is given based upon 14 characters. Polarity was determined on the basis of out-group comparison with the members of the superfamily Pentatomoidea and Trichophora No homoplasy had to be invoked.

Character and Character States

1. Lunate patch above ocelli (a): Ahmad \& Kamaluddin (1989) examined representatives of a number of genera of the Diemenia group of Gross (1976) and considered it apomorphic. It is a urique condifion in the enure Family Pentatomidae and is only found in Diemenia and Niarius species and therefore is considered here to be their synapomorphy,
2. Lateral lobes of paraclypei iust above the eyes (b): Ahmad \& Kamaluddin (1989) found this condition in those of several genera of the Diementa group and have considered it apomorptic.

Following theic reasoning in grossi, immarginofa and minula the condirion of mom promuent lateral lobes is considered here to be a further derived state (b2).
3. Anterior tobes uf prontium prodisced and directed anteriod (e): It is a rare conditions and is nöliced in some tetrodimes of Ptyylocentralinae and Ahmad \& Kamaluddin (1988b) thave considered it to be apomorphie. Followimg thein reasoning this character state in immargiriata and minula also reflects their synapomorphy. In immarginato the apex of anterior lobes appears narrower and mors prominent and probably refleets a more derived state (C_{2} ill Fig. 29).
4. Lateral margiths of pronomm chenulate (d): in halyines and some asopines a portion of the lateral margin of pronotum is erenulate like those of lestonocorines which state was cunsidered to be apomorphic by Scbaeler \& Ahmad (1987), In Diemenia and Niarius species also this character state looks apomorphic (d). On the otfer hand the entire lateral margin showing marked erenulations in grossi looks to be a more derived stare (d_{2} in Fig. 29).
5. Patch on the apicat lobe of scurellume (2): =1s several groups of Pentatominae including those of Diemenia species there is susually a spot on each basal angle of the seutellum but the spor on zhe apical lobe of the scutellum is very rare and it is certainly apomorphic in minuta.
6. Tibiap suicale (n): Sulcated tibiac ancenevuntered in some groups of Trichophora as in coreines and was considered derived by Ahmad (1979). The sulcated tibiae in Diemenia species are also considered here to be their autapomorphy.
7. Tibiae flattened (g); This character is alsn remarkably rate in Trichophora as is the case in some cortine Trichophora and it also appears to be an autapomorphy of Niarius spectes.
8. Sides of abdomen exposed (h): Iiv mast of the Pentatominae only a smal portion of connexiva is exposed but in Diemenia species not only the eatite connexiva are exposed but the sider of ite abdomen are also in some cases exposed. This is cerlainly autapomorphy of the group.
9. Dorsolateral labes of pugophore remarkably prominent (i): This appears a fare character in Pentatominate. Ahmad \& Kamaluddin (1989) also considered it apomorphic in certain genera of the Diemenia group. Laterally directed tips of these lobes appear more derived in inumarginuia and minuta (i_{2}). In minula however the laterally directed portion is remarkably prominent and this slateappears to be further derived (13 in Fig. 29).
10. Outer margin of paramere with un anch-shaped tooth-like structure (3): This is a tatc condition in Penlatominae and Ahmad \& Kamaluddin (1989)

FIGURES 21-24, Female terminalia, ventral view, 21, grossi, 22, immarginata, 23, minuta, 24, rubromarginata. 1st gox. (first gonocoxae); 2nd. gox. (second gonocoxae); 8th. pt. (eighth paratergite); 9th. pt. (ninth paratergite); arc. (arcus); pre, (proctiger),
also considered it synapomorphy of some genera of the Diemenia group. In immarginata this lobe appears slender, more elongate and acute at the apex and reflects a more derived state (j_{2} in Fig. 29). In rubromarginata however the apex of the outer lobe is recurved which looks to be a further derived condition (j_{3} in Fig. 29),
11. Base of inner lobe of paramere with a bristle (k): This is an extremely rare condition in Pentatominae and is only found in D. rubromarginata which is considered here to be its autapomorphy.
12. Dorsal membranous conjunctival apendage multilobed (1): In most of the Pentatominae the dorsal membranous conjunctival appendage is bilobed (Ahmad 1979). In rubromarginata each lobe is divided into two lobules which is certainly a derived state in this species. In grossi, immarginata and minuta each lobe is divided into several lobules which appears to be a further derived condition $\left(d_{2}\right.$ in Fig. 29).
13. Ovipositor parily concealed by Ist gonocoxae (m): In Pyrthocoroidea, Ahmad \& Schaefer (in manuscript) have considered partly concealed external genitalia to be an apomorphic state because it is very rare in Trichophora. Following their
reasoning in Niarius species the ovipositor partly concealed by the first gonocoxae is considered here to be an autapomorphy of the group.
14. Spermathecal bulb with finger-like processes (n): In some groups of Pentatominae the spermathecal bulb possesses finger-like processes which were considered to be apomorphic by Ahmad \& Kamaluddin (1989). Following their argument, possession of three processes in most of the Diemenia species (one or two processes in Niarius species) is considered here to be a more derived condition (n_{2} in Fig. 29). dis. spd prx. 1 ,

FIGURES 25-28. Spermatheca, 25, grossi, 26, immarginata, 27, minuta, 28, rubromarginata, dis. f. (distal flange); dis. spd. (distal spermathecal duct); mdl. (median dilation); pr. spb. (process of spermathecal bulb); prx. f. (proximal flange); prx. spd, (proximal spermathecal duct); scl. md. (sclerotized median duct); spb. (spermathecal bulb); sp.p. (spermathecal pump).

FIGURE 29. Cladogram of relationships between species of Diemenia.

Discussion of Cladogram

Ahmad \& Kamaluddin (1989) also considered Niarius and Diemenia species to be sister groups. D. rubromarginata appears isolated among the Diemenia species in having sister group relationship with grossi, immarginata and minuta. On the other hand minuta and marginata appear most closely related, and grossi to be their sister group. The anteriorly directed anterior lobes of the pronotum and laterally directed dorsolateral lobes of the
pygophore suggest that the two species are most closely related, and the complex multilobed dorsal membranous conjunctival appendages and more prominent lateral lobes of the paraclypei above the eyes, confirm the sister group relationship of grossi with immarginala and minuta.

ACkNOWLEDGMENT

This project was financially supported by USDA/PARC Research Project No. FG-Pa-361(PK-SEA-155).

References

AHMAD, I. 1979. A revision of the superfamilies Coreoidea and Pcntatomoidea (Heteroplera: Pentatomomorpha) from Pakistan, Azad Kashniir and Bangladesh. Enl. Soc. Kar. Suppl. 1 (4): |-113.
AHMAD. I. 1986. A fool-proof technique for inflation of male genitalia in Hemiptera (Insecta) Pakislan. J. ent Soc. Kar. 1 (2): 111-112.
AHMAD, 1. \& KAMALUDDIN, S. 1981. A new species of the genus Catacanthus Spinola (Heteroptera: Petatomidae: Pentatominae) from the New Hebrides with morphological notes on two other Australasian species and their relationships. Rec. S. Aust. Mus. 18 (II): 227-233.

AHMAD, I. \& KAMALUDDIN, S. in press. A new tribe for phyllocephaline genera Gellia Stal and Tetroda Amyot et Serville (Hemiptera: Pentatomidae) and their revision. Annol. zool. bol. Bralislava.

AHMAD, 1. \& KAMALUDDIN, S. 1989. A new genus and species of the Dlemenia group (Hemiptera: Pentatomidae: Pentatominae) from Australia with cladistic analysis of some related genera. Rec. S. Aust. Mus. 23 (1): 33-38.

GROSS, G.F. 1976. Plant-leeding and other bugs (Hemiptera) of Sonth Australia. Heteroptera. Parts 1-11: Government Printer, Adelaide.
GUÉRIN-MÉNEVILLE, F.E. 1830. Crustacea, Arachnida and Insecta of the Voyage, See France (voyages and c.-Coquille) Voyage Autour du Monde . . . sur la Coquille, pendant, 1822-25, and c. Zoologie 2 (2): 9-302. Paris.
KIRKALDY, G.W. 1909. 'Catalogue of the Hemiptera (Heteroptera) with Biological and Anatomical References, lists of Foodplants and Parasites, etc. Vol. 1 Cimicidae.' Felix Dames, Berlin.
MONTANDON, A.L. 1903. Hemipteres aquatiques notes synonymiques et geographiques, descriptions d'éspèces nouvelles. Bull. Soc: Bucaresl. 12 (1-2): 97-121.
SCHAEFFER, C.W., and AHMAD, 1. 1987. A cladistic analysis of the genera of the Lestonocorini (Hemiptera: Pentatomidae: Pentatominae). Proc. Entomol. Soc. Wash. 89 (3): 444-447.
SPINOLA, M. 1850. Tavola sinnotica dei generi spettanti alla classe degli insetti arthrodignati Hemiptera Linn., Latr. Rhyngalo Fabr., Rhynchota Burm. Mem. Malem. Fis. Soc. Ilal. Modena 25: 64-100.

